======================= Artificial Intelligence ======================= This section is allocated to the AI and robot modeling algorithms that will be discussed further later! Robots Kinematic models ----------------------- In this section I will describe the kinematic models of the robots and provide a code for estimating the end-effector position and etc. UR5 Robot ^^^^^^^^^ .. code-block:: python #Math and numpy library import from math import * import numpy as np #Translation matrixes for x and z def TXZ(a,b): if b == 'x': return [[1, 0, 0, a], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]] elif b == 'z': return [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, a], [0, 0, 0, 1]] #Rotation matrix for x and z def RXZ(a,b): c, s = cos(a), sin(a) if b == 'x': return [[1, 0, 0, 0], [0, c, -s, 0], [0, s, c, 0], [0, 0, 0, 1]] if b== 'z': return [[c, -s, 0, 0], [s, c, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]] #Euler angles calcluations to obtain Roll Pitch Yaw in degree def HM2RPY(HM): RX = atan2(HM[2][1], HM[2][2]) RZ = atan2(HM[1][0], HM[0][0]) RY = atan2(-HM[2][0], HM[0][0] * cos(RZ) + HM[1][0] * sin(RZ)) return [RX, RY, RZ] #DH table definition alpha1,alpha2,alpha3,alpha4,alpha5,alpha6=radians(90),radians(0),radians(0),radians(90),radians(-90),radians(0) a1,a2,a3,a4,a5,a6=0,-425,-392.25,0,0,0 d1,d2,d3,d4,d5,d6=0,0,0,109.15,94.65,82.3 #Joints angle definition j1,j2,j3,j4,j5,j6 = radians(23),radians(63),radians(33),radians(19),radians(10),radians(36.55) #Homogenous Matrix defnition tbase =TXZ(89.159,'z') t1 = np.matmul(np.matmul(np.matmul(TXZ(d1,'z'),RXZ(j1,'z')),TXZ(a1,'x')),RXZ(alpha1,'x')) t2 = np.matmul(np.matmul(np.matmul(TXZ(d2,'z'),RXZ(j2,'z')),TXZ(a2,'x')),RXZ(alpha2,'x')) t3 = np.matmul(np.matmul(np.matmul(TXZ(d3,'z'),RXZ(j3,'z')),TXZ(a3,'x')),RXZ(alpha3,'x')) t4 = np.matmul(np.matmul(np.matmul(TXZ(d4,'z'),RXZ(j4,'z')),TXZ(a4,'x')),RXZ(alpha4,'x')) t5 = np.matmul(np.matmul(np.matmul(TXZ(d5,'z'),RXZ(j5,'z')),TXZ(a5,'x')),RXZ(alpha5,'x')) t6 = np.matmul(np.matmul(np.matmul(TXZ(d6,'z'),RXZ(j6,'z')),TXZ(a6,'x')),RXZ(alpha6,'x')) #Homogenous transfer matrix ht=np.matmul(np.matmul(np.matmul(np.matmul(np.matmul(np.matmul(tbase,t1),t2),t3),t4),t5),t6) #Print the Homogenous Matrix print(ht) #Print the location Orientation = HM2RPY(ht) print("X:", ht[0][3]) print("Y:", ht[1][3]) print("Z:", ht[2][3]) print("--------------------------") #Print the orientation print("RX:", np.rad2deg(Orientation[0])) print("RY:", np.rad2deg(Orientation[1])) print("RZ:", np.rad2deg(Orientation[2])) The descriptive model above estimates the orientation and transformation of a UR5 colaborative robot. Meaning that for each joint space configuration, there is a corresponding cartesian orientation and location. Random Robot Joints configuration and generation ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. code-block:: cpp // Example C++ program #include #include #include float randFloat(float a, float b) { //std::cout << (float)rand() << "\n"; return ((b - a) * ((float)rand() / RAND_MAX)) + a; } int main() { float j1, j2, j3, j4, j5, j6; int nbExec = 10; for (int i=0; i